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Cellular flow patterns and their evolutionary scenarios in three-dimensional
Rayleigh-Bénard convection
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The evolution of three-dimensional, cellular convective flows in a plane horizontal layer of a Boussinesq
fluid heated from below is studied numerically. Slow motion in the form of a spatially periodic pattern of
hexagonal cells is introduced initially. In a further development, the flow can undergo a sequence of transitions
between various cell types. The features of the flow evolution agree with the idea of the flow seeking an
optimal scale. In particular, two-vortex polygonal cells may form at some evolution stages, with an annular
planform of the upflow region and downflows localized in both central and peripheral regions of the cells. If
short-wave hexagons are stable, they exhibit a specific, stellate fine structure.
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Quasi-two-dimensional roll flows are the most typic
forms of convection in a plane horizontal fluid layer heat
from below~Rayleigh-Bénard convection, RBC! over a wide
range of Rayleigh numbersR, provided that the spatial dis
tribution of the material parameters of the fluid does n
exhibit any significant up-down asymmetry~asymmetry with
respect to the horizontal midplane of the layer!. However,
three-dimensional cellular flows are not prohibited in sy
metric layers and, as established in recent years, can
stable within a certain region of the parameter space. St
hexagonal cells in a nearly uniform layer were experim
tally observed by Assenheimer and Steinberg@1# at a
strongly supercriticalR. Subsequently, Clever and Busse@2#
analyzed, in a linear approximation, the stability of finit
amplitude flows in the form of hexagonal cells. They fou
that a region of stable hexagonal-cell flow regimes exists
the (k,R) plane~wherek is the horizontal wave number o
the flow! at Prandtl numbersP*1.2. A stability region was
also revealed for square cells asymmetric about the midp
@3,4#. Thus, at given parameter values, two or more attrac
corresponding to different flow forms can in general coex
although their basins of attraction in the space of initial sta
may differ widely in size.

Two-dimensional convective roll flows normally exhibit
tendency to approach a certain wave number, optimal un
given conditions but not always achievable~see Ref.@5# for
a detailed discussion!. This optimum should also emerge
the three-dimensional cellular patterns. However, the tra
formations that can bring such patterns closer to the optim
still remain unexplored.

Here, we analyze such transformations in the RBC us
spectral numerical simulations. At initial time, we specify
weak temperature-velocity perturbation in the form of a s
tially periodic pattern of hexagonal cells. The wave numb
k0 of this perturbation defines the periods of the pattern
the horizontalx andy directions. In most cases, precisely
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in the stability analysis by Clever and Busse@2#, we re-
stricted ourselves to studying only such flow transformatio
that do not increase the fundamental wavelength of the
tern. Accordingly, the periods of the initially induced patte
in x andy directions were simultaneously the correspond
wavelengths of the lowest harmonic in the spectrum. Ho
ever, a few additional computational runs were based
spectra whose lowest harmonics had double the spatial p
ods of the original pattern. We will denote them asd runs.

We adopt the standard formulation of the problem of t
RBC ~see, e.g., Ref.@5#!. Specifically, the Navier-Stoke
equation, the heat-diffusion equation, and the continu
equation are written in the Boussinesq approximation;
slip, isothermal boundary conditions are imposed at the h
zontal layer surfacesz50,1 ~the layer thickness is used he
as the unit length!.

In solving the problem, we use the technique proposed
Pesch~see Ref.@6# for a description!. The velocity field is
decomposed into a poloidal and a toroidal component, an
spectral~Galerkin! technique is applied to these two veloci
components and temperature. The fields are expanded in
Fourier series inx andy, and the basis functions representin
the z dependences are trigonometric functions for the te
perature and the Chandrasekhar functions for velocity. T
efficiency of the numerical algorithm is greatly enhanced
means of treating the time variation of higher harmonics
an adiabatic approximation, without numerical integratio
The behavior of the lower~‘‘active’’ ! modes is computed
using the Adams-Bashforth method. For computations,
employ an adaptation of the numerical code developed
Pesch.

The parameters determining the scenario of evolution
R and P, as well as the wave numberk0 of the initially
specified perturbation. We carried out our computations
P51, 2.5, and 7. The last two values were chosen for
sake of direct comparability between our results and thos
Clever and Busse@2#.

The flow structures revealed in our simulations will b
described below in terms of the distributions of temperat
©2003 The American Physical Society13-1
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FIG. 1. Types of ultimately es-
tablished structures@in all figures,
temperature distributions ar
shown in a gray-scale represent
tion, with the white regions warm
and the black regions cold; here
as in Figs. 2~b! and 3, these distri-
butions refer to the midplanez
51/2 of the layer#: ~a! 1-cell, ~b!
stellate 1-cell,~c! ‘‘perfect’’ two-
vortex cell, ~d! small two-vortex
cell with joining triangles, ~e!
eyed pattern,~f! 2-cells with in-
verse circulation,~g! A3-cells,~h!
3-cells with direct circulation,~i!
unsteady rolls,~j! traveling waves.
s
d

of
.
th
a

ow

era-

ar

the
at

igh
ibit
n

onal
of

h
-

ing
ear
art
in

ol

r-
his

ther
ave
n

he
perturbations over horizontal sections of the layer~mainly,
over the midplanez51/2). As known from numerous studie
of convective phenomena, such a horizontal temperature
tribution mimics, to a first approximation, the distribution
the vertical component of velocity over the same section

Generally, the above-noted restriction on the waveleng
of the perturbations would prevent our computation
scheme from describing a large-scale flow, if such a fl

FIG. 2. Temperature fields in a stellate 1-cell~top: R512 000,
P57, k052.4) and stellate 2-cells with inverse circulation~bot-
tom: R514 000, P52.5, k051.2) at levels of~a! z50.05, ~b! z
50.5, and~c! z50.95.
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could arise. However, in the cases we consider, the gen
tion of a mean drift is forbidden by the flow symmetry.

First of all, our findings agree with the results of the line
stability analysis@2#. If k0 is within the stability band, stable
hexagons with a wave numberk5k0 develop from the initial
perturbation@Fig. 1~a!#, we will call them 1-cells. The same
situation takes place if the initial wave number is beyond
short-wave boundary of the stability band. The point is th
the merger of small, high-k0 cells into larger cells is forbid-
den in our simulations, sincek0 coincides with the wave
number of the lowest harmonic in the spectrum.

It is worth noting that the stable 1-cells that persist at h
wave numbers, beyond the linear-stability boundary, exh
a remarkable fine structure~some features of this sort ca
also be seen in Fig. 1 in Ref.@2#!. The horizontal temperature
distributions demonstrate stellate patterns: in each hexag
cell, six warm rays stretch from the center to the vertices
the hexagon@Fig. 1~b!#. At P57, such patterns are muc
more pronounced than atP52.5; they are especially clear
cut in the lower boundary layer@Figs. 2~a! and 2~b!, top#.
Thus, a collection of radially stretched vortices, resembl
convection rolls broadening toward the cell periphery, app
to be superposed onto the main circulation in the lower p
of the cell. This pattern seems to be akin to crossed rolls
normal roll convection. In cells with inverse circulation, co
rays can be observed in the upper part of the layer@Figs. 2~b!
and 2~c!, bottom#.

If the point representing the initial state in the (k,R) dia-
gram is to the left of the long-wave boundary of the linea
stability region or, possibly, above the upper boundary of t
region ~as in the case of some runs forP52.5), the origi-
nally induced hexagons are unstable and transform into o
structures with smaller characteristic scales. The final w
number may lie either within the theoretical stability regio
or to the right of the short-wave boundary of this region. T
3-2
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FIG. 3. Basic stages of the pattern evolution:~a! 1-cell, ~b!, ~c! breakdown of the 1-cell into 3-cells, (b8) ‘‘hydrodynamic kaleidoscope’’
at the breakdown stage, (c8) traveling waves,~d! small two-vortex cell with joining triangles~transient form with a central umbilicus!, ~e!
large two-vortex cell with joining triangles,~f! railway pattern,~g! A3-cells with inverse circulation;~h! ‘‘chewing’’ A3-cells with direct
circulation,~i! square cells,~j! 3-cells with direct circulation,~k! perfect two-vortex cell,~l! 2-cells with inverse circulation,~m! 1-cells with
inverse circulation,~n! eyed pattern.
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specific value of the final wave number depends primarily
the expected optimum wave number; at the same tim
fairly wide spread around this optimum is present, since
spatial spectrum of the flow is discrete in our problem. He
we only study qualitative features of the flow evolutio
rather than determine the particular wave numbers. Figu
shows some final states we observed.

In many cases, the flow arrives at a pattern of hexago
cells smaller than the original ones. Depending on the o
mum flow scale, they may be smaller than 1-cells by a fac
of 2 @Figs. 1~f! and 2~a!–2~c!#, A3 @Fig. 1~g!#, or 3 @Fig.
1~h!#; we will call them 2-cells,A3-cells, or 3-cells, respec
tively. The 2-cells andA3-cells that develop from the 1-cell
are characterized by inverse circulation: the fluid ascend
the peripheral regions of the cells and descends in their
ters. The most peculiar types of finally established structu
are intermediate in their characteristic scale between 1-c
and 2-cells. They can naturally be called two-vortex hexa
nal cells@Figs. 1~c! and 1~d!#, since each of them is forme
by two closed concentric annular vortices surrounding
center of the cell: in any meridional section of the cell,
upflow region is present at a certain distance from the cen
while two downflow regions are situated near the center
at the periphery of the cell.

No transformations into rolls took place atP52.5 and 7.
For P51 andk0&1.2, the flow arrived at a pattern of un
steady rolls; they varied their orientation@Figs. 1~i! and 1~j!#,
so that the roll width closest to the optimum value was c
sen by the flow in any particular case out of the set of p
sible widths. In some cases, waves traveling along the r
were observed@Fig. 1~j!#.
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Figure 1~e! shows one more peculiar type of the final sta
of the flow. It was observed in ad run for R518 000, P
52.5, andk051. The pattern has a curious, ‘‘eyed’’ appea
ance in this case.

When describing evolutionary scenarios, we will refer
Fig. 3, marking particular stages of the evolution by the
phabets denoting the corresponding patterns in the figure
noted above, we observed cell transformations ifk0 was less
than the long-wave bounding wave number of the stabi
range. Most computational runs that demonstrate such tr
formations refer toP52.5.

At small k0 (;0.8 for 14 000,R,18 000, P52.5), the
original cells disintegrate into 3 cells, which then settle do
to a steady state: (a)→(b)→(c)→(j). The additionald run
for R518 000 demonstrates, after the formation of 3-cells
number of complex transformations, which ultimately lead
A3-cells with direct circulation: (a)→(b)→(c)→(j)→•••

→(g)* ~the asterisk indicates that the direction of circulati
is opposite to that shown in Fig. 3!. Thus, adding new de
grees of freedom to the system facilitates the attainmen
the final state with a wave number ofA3k0, which seems to
be closer to the optimum value than 3k0 is.

At a larger Rayleigh number ofR520 000 and the same
k0, the final state of the flow is time dependent, andA3-cells
form ultimately. The final wave number is thus reduced
compared to the case of a smallerR. This agrees with the
well-known general regularity that the optimum wave nu
ber of the RBC and, on an average, the final wave numb
reached in various particular situations decrease with
creasingR ~see, e.g., Ref.@5#!. The following path is real-
3-3



-
i

an
ea

a
e

at
g.
m

ll
e-

.
u

wn
g

s

un-

nd

of

ved
the
re

ow
spe-
of
tural

e
ns.
ic

asic

A. V. GETLING AND O. BRAUSCH PHYSICAL REVIEW E67, 046313 ~2003!
ized: (a)→(b)→(c)→(j)→(i)→(h). The final state is rep
resented by the cells with direct circulation. This pattern
characterized by the periodic alternation of broadening
narrowing of dark bars intersecting some cells; for this r
son, we call them ‘‘chewing’’ cells.

In most regimes with unstable 1-cells, they rapidly bre
down into 3-cells. If 3k0 proves to be much larger than th
optimum wave number, 3-cells~which may not be fully de-
veloped! combine to form two-vortex hexagons: (a)→(b)
→(c) @→(d)#→(e)→••• @the square brackets mean th
stage~d! can be skipped#. Furthermore, in some cases, e.
at k51 and 14 000,R,20 000, such scenarios can be co
pleted as follows:•••→(f)→(g). ForR518 000 or 20 000,
the final state~g! is time dependent, with vibrating ce
boundaries; the additionald runs demonstrate a complex s
quence of the transitions between states~c! and ~n! for R
518 000 and a steady~g! state forR520 000.

If k51.2, the evolution leads to a final~l! state~2-cells! at
14 000,R,18 000 and to a~k! state~‘‘perfect’’ two-vortex
cells! at R520 000. If k51.4, an~l! state is also typical of
R514 000, while 1-cells are recovered at highR values. At
R518 000, an inverse circulation~m! state was observed
This is obviously an accident, since both directions of circ
lation are equally probable in layers without an up-do
asymmetry. AtR520 000, the boundaries of the resultin
1-cells vibrate.
u
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For P57 and R512 000, we observed transformation
that either ended in state~d! (k051.2 or 1.35) or demon-
strated a final transition~d!→(l) (k051.5). At k*2, stable
stellate 1-cells~b! were formed.

Four scenarios were run atP51, R518 000. In three of
them, the final state was time dependent, represented by
steady rolls. They were either slightly turbulent (k050.8) or
superposed with asymmetric running waves (k051 and 1.2!.
At k051, a kaleidoscopic stage (b8) preceded the formation
of two-vortex cells, which then transformed into 2-cells a
ultimately led to state (c8). State~k! was found to be final in
the run fork051.4. At P51, all thed runs yielded scenarios
very similar to those observed in the corresponding runs
the basic series.

To summarize, we note that the features of the obser
scenarios agree with the idea of the general tendency of
flow seeking its optimum scale. Of particular interest a
two-vortex hexagons with a reduced characteristic fl
scale. If short-wave hexagons are stable, they exhibit a
cific, stellate fine structure. Conditions for the realizability
the revealed patterns or some of their features under na
conditions still remain, however, to be explored.
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