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Cellular flow patterns and their evolutionary scenarios in three-dimensional
Rayleigh-Benard convection
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The evolution of three-dimensional, cellular convective flows in a plane horizontal layer of a Boussinesq
fluid heated from below is studied numerically. Slow motion in the form of a spatially periodic pattern of
hexagonal cells is introduced initially. In a further development, the flow can undergo a sequence of transitions
between various cell types. The features of the flow evolution agree with the idea of the flow seeking an
optimal scale. In particular, two-vortex polygonal cells may form at some evolution stages, with an annular
planform of the upflow region and downflows localized in both central and peripheral regions of the cells. If
short-wave hexagons are stable, they exhibit a specific, stellate fine structure.
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Quasi-two-dimensional roll flows are the most typicalin the stability analysis by Clever and Buskg, we re-
forms of convection in a plane horizontal fluid layer heatedstricted ourselves to studying only such flow transformations
from below(Rayleigh-Baard convection, RBCover a wide  that do not increase the fundamental wavelength of the pat-
range of Rayleigh numbeiR, provided that the spatial dis- tern. Accordingly, the periods of the initially induced pattern
tribution of the material parameters of the fluid does notin x andy directions were simultaneously the corresponding
exhibit any significant up-down asymmetigsymmetry with  wavelengths of the lowest harmonic in the spectrum. How-
respect to the horizontal midplane of the lgyagdowever, ever, a few additional computational runs were based on
three-dimensional cellular flows are not prohibited in sym-spectra whose lowest harmonics had double the spatial peri-
metric layers and, as established in recent years, can lms of the original pattern. We will denote themdisuns.
stable within a certain region of the parameter space. Stable We adopt the standard formulation of the problem of the
hexagonal cells in a nearly uniform layer were experimenRBC (see, e.g., Ref[5]). Specifically, the Navier-Stokes
tally observed by Assenheimer and Steinbéfg at a  equation, the heat-diffusion equation, and the continuity
strongly supercriticaR. Subsequently, Clever and Bud®8  equation are written in the Boussinesq approximation; no-
analyzed, in a linear approximation, the stability of finite- slip, isothermal boundary conditions are imposed at the hori-
amplitude flows in the form of hexagonal cells. They foundzontal layer surfaces= 0,1 (the layer thickness is used here
that a region of stable hexagonal-cell flow regimes exists iras the unit length
the (k,R) plane(wherek is the horizontal wave number of In solving the problem, we use the technique proposed by
the flow) at Prandtl number®=1.2. A stability region was Pesch(see Ref[6] for a description The velocity field is
also revealed for square cells asymmetric about the midplangecomposed into a poloidal and a toroidal component, and a
[3,4]. Thus, at given parameter values, two or more attractorspectral(Galerkin technique is applied to these two velocity
corresponding to different flow forms can in general coexistcomponents and temperature. The fields are expanded in the
although their basins of attraction in the space of initial stategourier series irx andy, and the basis functions representing
may differ widely in size. the z dependences are trigonometric functions for the tem-

Two-dimensional convective roll flows normally exhibit a perature and the Chandrasekhar functions for velocity. The
tendency to approach a certain wave number, optimal undefficiency of the numerical algorithm is greatly enhanced by
given conditions but not always achievaligme Ref[5] for =~ means of treating the time variation of higher harmonics in
a detailed discussignThis optimum should also emerge in an adiabatic approximation, without numerical integrations.
the three-dimensional cellular patterns. However, the transfhe behavior of the lowef“active”) modes is computed
formations that can bring such patterns closer to the optimurasing the Adams-Bashforth method. For computations, we
still remain unexplored. employ an adaptation of the numerical code developed by

Here, we analyze such transformations in the RBC usindPesch.
spectral numerical simulations. At initial time, we specify a  The parameters determining the scenario of evolution are
weak temperature-velocity perturbation in the form of a spaR and P, as well as the wave numbég, of the initially
tially periodic pattern of hexagonal cells. The wave numberspecified perturbation. We carried out our computations for
ko of this perturbation defines the periods of the pattern inP=1, 2.5, and 7. The last two values were chosen for the
the horizontalk andy directions. In most cases, precisely assake of direct comparability between our results and those of

Clever and Bussg2].
The flow structures revealed in our simulations will be
*Electronic address: A.Getling@ru.net described below in terms of the distributions of temperature
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FIG. 1. Types of ultimately es-
tablished structurelsn all figures,
temperature  distributions  are
shown in a gray-scale representa-
tion, with the white regions warm
and the black regions cold; here,
as in Figs. Pb) and 3, these distri-
butions refer to the midplane
=1/2 of the laye}: (a) 1-cell, (b)
stellate 1-cell,(c) “perfect” two-
vortex cell, (d) small two-vortex
cell with joining triangles, (e)
eyed pattern(f) 2-cells with in-
verse circulation(g) J3-cells, (h)
3-cells with direct circulation(i)
unsteady rolls(j) traveling waves.
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perturbations over horizontal sections of the laymainly,  could arise. However, in the cases we consider, the genera-
over the midplane=1/2). As known from numerous studies tion of a mean drift is forbidden by the flow symmetry.
of convective phenomena, such a horizontal temperature dis- First of all, our findings agree with the results of the linear
tribution mimics, to a first approximation, the distribution of stability analysig2]. If k, is within the stability band, stable
the vertical component of velocity over the same section. hexagons with a wave numbke k, develop from the initial

Generally, the above-noted restriction on the wavelengthperturbation Fig. 1(a)], we will call them 1-cells. The same
of the perturbations would prevent our computationalsjtuation takes place if the initial wave number is beyond the
scheme from describing a large-scale flow, if such a flowshort-wave boundary of the stability band. The point is that
the merger of small, higky cells into larger cells is forbid-
den in our simulations, sinck, coincides with the wave
number of the lowest harmonic in the spectrum.

It is worth noting that the stable 1-cells that persist at high
wave numbers, beyond the linear-stability boundary, exhibit
a remarkable fine structuresome features of this sort can
also be seen in Fig. 1 in RgR]). The horizontal temperature
distributions demonstrate stellate patterns: in each hexagonal
cell, six warm rays stretch from the center to the vertices of
the hexagor{Fig. 1(b)]. At P=7, such patterns are much
more pronounced than &=2.5; they are especially clear-
cut in the lower boundary laydiFigs. 2a) and Zb), top].
Thus, a collection of radially stretched vortices, resembling
convection rolls broadening toward the cell periphery, appear
to be superposed onto the main circulation in the lower part
of the cell. This pattern seems to be akin to crossed rolls in
normal roll convection. In cells with inverse circulation, cool
rays can be observed in the upper part of the Iayas. 2b)
and 2c), bottom).

If the point representing the initial state in thie,R) dia-
gram is to the left of the long-wave boundary of the linear-
stability region or, possibly, above the upper boundary of this
region (as in the case of some runs fBr=2.5), the origi-

FIG. 2. Temperature fields in a stellate 1-ogtip: R=12000, hally induced hexagons are unstable and transform into other
P=7, ko=2.4) and stellate 2-cells with inverse circulatidmot-  Structures with smaller characteristic scales. The final wave

tom: R=14 000, P=2.5, k,=1.2) at levels of(a) z=0.05, (b) z  number may lie either within the theoretical stability region
=0.5, and(c) z=0.95. or to the right of the short-wave boundary of this region. The
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FIG. 3. Basic stages of the pattern evoluti¢: 1-cell, (b), (c) breakdown of the 1-cell into 3-cells, (b“hydrodynamic kaleidoscope”
at the breakdown stage,’(ctraveling waves(d) small two-vortex cell with joining triangle&ransient form with a central umbilicys(e)
large two-vortex cell with joining trianglesf) railway pattern,(g) 3-cells with inverse circulationth) “chewing” \/3-cells with direct
circulation, (i) square cells(j) 3-cells with direct circulation(k) perfect two-vortex cell(l) 2-cells with inverse circulatior{m) 1-cells with
inverse circulation(n) eyed pattern.

specific value of the final wave number depends primarily on  Figure Xe) shows one more peculiar type of the final state
the expected optimum wave number; at the same time, af the flow. It was observed in d run for R=18 000, P
fairly wide spread around this optimum is present, since the=2.5 andk,=1. The pattern has a curious, “eyed” appear-
spatial spectrum of the flow is discrete in our problem. Hereagnce in this case.
we only study qualitative features of the flow evolution  \when describing evolutionary scenarios, we will refer to
rather than determine the particular wave numbers. Figure fig 3 marking particular stages of the evolution by the al-
shows some final states we observed. phabets denoting the corresponding patterns in the figure. As
In many cases, the flow arrives at a pattern of hexagongloteq apove, we observed cell transformatiorig ifvas less
cells smaller than the original ones. Depending on the Opt'than the long-wave bounding wave number of the stability
mum ﬂ(_)W scale, they may be smaller. than 1-cells by a faCtOFange Most computational runs that demonstrate such trans-
of 2 [Figs. Xf) and Z2a)—2(c)], 3 [Fig. 1(g)], or 3 [Fig. formations refer tP=2.5.
1(h)]; we will call them 2-cells,/3-cells, or 3-cells, respec- At small ko (~0.8 for 14 008<R<18000,P=2.5), the
tively. The 2-cells and,3-cells that develop from the 1-cells _original cells disintegrate into 3 cells, which then settle down
are characterized by inverse circulation: the fluid ascends i B a steady state: (a) (b)— (c)—(j). The additionald run
the peripheral regions of the cells and descends in their el R=18 000 der.nonstrates after t.he formation of 3-cells. a

ters. The most peculiar types of finally established structure§ umber of complex transformations. which ultimately lead t
are intermediate in their characteristic scale between 1-cell&UMP€r of complex transtormations, ch ultimately lead to

and 2-cells. They can naturally be called two-vortex hexago‘/§ -cells with direct circulation: (&) (b)—(c)—(j) = --

nal cells[Figs. 1c) and Xd)], since each of them is formed —(g)* (the asterisk indicates that the direction of circulation

by two closed concentric annular vortices surrounding thdS Opposite to that shown in Fig).3Thus, adding new de-

center of the cell: in any meridional section of the cell, angrees of freedom to the system facilitates the attainment of

upflow region is present at a certain distance from the centethe final state with a wave number ¢8k,, which seems to

while two downflow regions are situated near the center anée closer to the optimum value thafg3is.

at the periphery of the cell. At a larger Rayleigh number dR=20000 and the same
No transformations into rolls took place Bt=2.5 and 7. ko, the final state of the flow is time dependent, af&icells

For P=1 andky=1.2, the flow arrived at a pattern of un- form ultimately. The final wave number is thus reduced as

steady rolls; they varied their orientatipigs. i) and Xj)], compared to the case of a smalRr This agrees with the

so that the roll width closest to the optimum value was cho-well-known general regularity that the optimum wave num-

sen by the flow in any particular case out of the set of posber of the RBC and, on an average, the final wave numbers

sible widths. In some cases, waves traveling along the rollseached in various particular situations decrease with in-

were observedFig. 1()]. creasingR (see, e.g., Refl5]). The following path is real-
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ized: (a)—(b)—(c)—(j)—(i)—(h). The final state is rep- For P=7 and R= 12000, we observed transformations
resented by the cells with direct circulation. This pattern isthat either ended in stat@l) (ko=1.2 or 1.35) or demon-
characterized by the periodic alternation of broadening angtrated a final transitiotd)—(I) (ko=1.5). Atk=2, stable

narrowing of dark bars intersecting some cells; for this reaStellate 1-cellsb) were formed.
son, we call them “chewing” cells. Four scenarios were run Bt=1, R=18000. In three of

In most regimes with unstable 1-cells, they rapidly breakthem, the final state was time dependent, represented by un-

steady rolls. They were either slightly turbule 0.8) or
down into 3-cells. If ¥, proves to be much larger than the y y W ! 'ghtly turbuileft, ¢ 0.8)

) : superposed with asymmetric running wavkg= 1 and 1.2.
optimum wave number, 3-cellsvhich may not be fully de- Aty — 1 a kaleidoscopic stage (bpreceded the formation

veloped combine to form two-vortex hexagons: (aXb)  of two-vortex cells, which then transformed into 2-cells and
—(c) [—(d)]—(e)—--- [the square brackets mean that ultimately led to state (9. State(k) was found to be final in
stage(d) can be skippeld Furthermore, in some cases, e.g.,the run fork,=1.4. AtP=1, all thed runs yielded scenarios
atk=1 and 14 006cR<20 000, such scenarios can be com-very similar to those observed in the corresponding runs of
pleted as follows: - - — (f)—(g). ForR=18000 or 20000, the basic series.

the final state(g) is time dependent, with vibrating cell ~ T0O summarize, we note that the features of the observed
boundaries; the additional runs demonstrate a complex se- SCENnarios agree with the idea of the general tendency of the

auence of the tansiions between stakesand () for R (ow SC2K1 s OBt scle, OF perlculr nerest re
=18000 and a steadyy) state forR=20 000. g

- ) le. If short- h le, th hibi -
If k=1.2, the evolution leads to a find) state(2-cell9 at scale. If short-wave hexagons are stable, they exhibit a spe

cific, stellate fine structure. Conditions for the realizability of
14000-R<18000 a0 g st perat wovoren (1 e S ST e S
R=14000, while 1-cells are recovered at hiBlvalues. At conditions still remain, however, to be explored.
R=18000, an inverse circulatiofm) state was observed. We are grateful to W. Pesch for the availability of the
This is obviously an accident, since both directions of circu-numerical code and to F. H. Busse for valuable discussions.
lation are equally probable in layers without an up-downThe work of A.V.G. was supported by the German Academic
asymmetry. AtR=20000, the boundaries of the resulting Exchange Service and by the Russian Foundation for Basic

1-cells vibrate. ResearchProject No. 00-02-16313
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